




SELECTED PROBLEMS IN CLASSICAL FUNCTION THEORY 3

we can replace non-tangential boundary values with asymptotic boundary values
(see [19]), and interpret \almost everywhere" as being understood with respect
to harmonic measure, and then the theorem extends toH p(G).

An interesting question is, what happens for the Smirnov classesE p(G) when
p � 1? The answer depends on the geometric character of the boundary. Recall
that a �nitely connected domain G is called Smirnov if the derivative of the
conformal map from a circular domain ontoG is an outer function (see [8]).
It turns out that if the domain G is non-Smirnov, then the theorem is false,
and indeed in such a domain, for every 0< p < 1 ; there exist non-constant
f 2 E p(G) such that 0 � f (� ) � 1 for almost every� on the boundary of the
domain (see [18]). In the other extreme, if the domainG has smooth boundary
� ; then the classesH p(G) and E p(G) are equal (as sets), and therefore the
situation in E p(G) is exactly the same as that ofH p(G). However, if the domain
is Smirnov and has singularities, these singularities allow for the construction of
functions in E p with real boundary values, for certain values ofp. In fact, the
values ofp that allow for the construction of such functions are tightly connected
in general to the geometric characteristic of the singularity. For more detail on
the construction of such functions with real boundary values, see [6, 7] and the
references therein.

In the case that there do exist non-trivial functions inE p with real boundary val-
ues, ifG is a simply connected Smirnov domain, L. DeCastro and D. Khavinson
noted that the analogue of the Neuwirth-Newman theorem holds:

Theorem 2.2. ([7]) Let G be a simply connected Smirnov domain with recti�able
boundary � . Let p0 � 1 be de�ned as the smallestp � 1 such that f 2 E p(G)
and f has real boundary values a.e. on� imply that f is a constant. Then all
f 2 E p0=2 such thatf � 0 a.e. on � are constants.

The proof of this theorem is along the same lines as that of the original Neuwirth-
Newman result, and is sketched here.

Proof. Write f (z) = B(z)S(z)F 2(z), whereB(z) is a generalized Blaschke prod-
uct, S(z) is a bounded singular inner function, andF (z) 2 E p0 is an outer
function. On �, since f � 0; we have thatB(z)S(z)F 2(z) = jf (z)j: On the other
hand, jf (z)j = jF (z)j2 = F (z)F (z) a.e., and thereforeF (z) = B(z)S(z)F (z) 2
E p0 (G): This implies that F (z) + F (z) 2 E p0 (G) and is real-valued, hence a con-
stant. Thus, f (z) = const � B (z)S(z) is a bounded function with non-negative
boundary values, hence1
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Theorem 3.2. ([21]) Let G be a �nitely connected region whose boundary is
analytic, and let A and P be the area and perimeter ofG. The following are
equivalent:

(i) � = 2A
P ;

(ii)There is � 2 H 1 (G) such that �z(s) � i� d�z



6 C. B �EN �ETEAU AND D. KHAVINSON

Sketch of the proof: Without loss of generality, let's assume that the best
approximation is zero. Then one can show that 02 G and that the extremal
function f � for the dual problem satis�es jf � j � 1 in G and jf � j = 1 on the
boundary, and the duality relationship

f � �zdz = constjzjpds on �

holds, where we can take the constant to be positive. Dividing byz yields

(3.1)
f � (z)

z
dz = constjzjp� 2ds:

For p = 1, using regularity results for extremals (see [23]) in order to apply the
argument principle, if f � is not constant, one can show that the left hand side
of (3.1) has a non-trivial increment of its argument, while the right hand side
doesn't (because it's positive), which is a contradiction. Therefore, we conclude
that f � is a unimodular constant. Now again using regularity of the boundary and
parametrizing z = r (� )ei� , and using the duality relationship (3.1) gives, after
some simple calculus, thatdr=d� = 0; and hence � consists of circles centered
at the origin. Using the duality equation one last time shows that sincedz=ds
must have the same sign on both circles, then there can only be one circle, and
hence,G is a disk. The casep > 1 is more complicated, and in particular, the
case thatp 2 N has to be treated separately. For details, see [15].

Note that this theorem provesthat the domain is simply connected. If we assume
G to be simply connected to begin with, the regularity hypothesis (that is, the
analyticity of the boundary) can be relaxed signi�cantly to assume merely that
G is a Smirnov domain, by appealing to the following theorem.

Theorem 3.5. ([10]) Let G be a Jordan domain inC containing 0 and with the
recti�able boundary � satisfying the Smirnov condition. Suppose the harmonic
measure on� with respect to the origin equalscjzj � ds for z 2 � , whereds denotes
arclength measure on� , � 2 R and c is a positive constant. Then

(i) For � = � 2, the solutions are precisely all disksG containing 0:

(ii) For � = � 3; � 4; � 5; ::: there are solutionsG which are not disks.

(iii) For all other values of �; the only solutions are disks centered at0:

The conclusion of Theorem 3.4 then follows, because the left hand side of (3.1)
is a constant multiple of harmonic measure at the origin, and since in our case,
� = p� 2 with p > 1 so� > � 1, part (iii) of Theorem 3.5 applies, giving thatG
is a disk.

What happens in the �nitely connected case is not known, and thus leads to the
following problem.

Problem 3.1. Extend Theorem 3.4 to �nitely connected Smirnov domains. In
particular, do the hypotheses of that theorem imply thatG is simply connected?

Notice that in the case 0< p < 1, we can still de�ne analytic content, but we
lose duality (since in that caseE p is not a Banach space), and so it is not clear
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whereu is a solution of the dual problem. Integrating with respect to �z gives (in
G):

u = constjzjp + h; whereh 2 H 1 (G):

Sinceu = 0 on � ; we get that hj � is real-valued and therefore constant on �; and
thereforejzj is constant on �; hence � is a disk. For the proof of (ii), see [15].

Note that this proof is easier in the context of Bergman spaces, because the
duality relationship holds in the whole domainG.

Problem 3.4. What are the isoperimetric \sandwich" estimates for� A p ?

Nothing is known about the following problem.
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This yields an alternative proof that Saint-Venant's inequality becomes equality
only for disks. We are thus left with a host of interesting problems to investigate.

Problem 4.1. Find the \book" proof of the Olsen - Reguera theorem in[25],
freeing it from the power series calculation and extending the result to arbitrary
domains.

Problem 4.2. Is the sharp upper bound for theA2-content equal to1
2

q
Area (G)

� ?

Problem 4.3. What is the sharp lower bound for theA2-content expressed in
terms of geometric characteristics (e.g., area, perimeter, principal frequency) of
the domain?

Problem 4.4. Re�ne the \isoperimetric sandwich" inequalities for k[T � ; T]k to
include the connectivity of the domain.

This last problem is virtually unexplored territory. In his thesis in the 70s ([17]),
S. Jacobs re�ned Carleman's celebrated inequality ([5]) bounding theA2 norm of
G in terms of the E 1 norm of G for multiply connected domains. In [22], there is
a result connecting geometric characteristics of the domainG (area, perimeter,
connectivity, and analytic content) with the mapping properties of' , the best
approximation of �z, and the mapping properties of the extremal function in the
dual problem.
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