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Abstract. Bohr’s theorem ([10]) states that analytic functions bounded by
1 in the unit disk have power series

∑
anzn such that

∑
|an||z|n < 1 in the

disk of radius 1/3 (the so-called Bohr radius.) On the other hand, it is known
that there is no such Bohr phenomenon in Hardy spaces with the usual norm,
although it is possible to build equivalent norms for which a Bohr phenomenon
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coefficients of the power series of f, one can ask whether a version of Bohr’s
theorem would hold in that case. For example, given p and q, does there exist
r > 0 such that

‖f‖Hq ≤ 1 ⇒
∞∑

n=0

|an|prn ≤ 1?

For 1 ≤ q ≤ 2 and p = q
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Now fix α > 0 and let (r, n) → (1, ∞) so that (1 − r)(n + 1) → α. Then

lim inf
r→1−

(1 − r)1/p−1/2C(r, p, 2) ≥ (2a)1/2

(ap + 1)1/p

(
1 − e−α(ap+1)

)1/p(
1 − r−2aα

)1/2
.

Letting α → ∞ we get

lim inf
r→1−

(1 − r)1/p−1/2C(r, p, 2) ≥ (2a)1/2

(ap + 1)1/p
.

For the choice a = 1/(2 − p) we have (2a)1/2/(ap + 1)1/p = (1 − 2/p)1/p, which
proves (i).

To prove (iii) put Pn(z) = z2n+1Vn(z), where Vn is the de la Vallée-Poussin kernel,
defined by Vn = 2K2n+1 − Kn, and Kn is the Fejér kernel (cf. Lemma 2.4). By
Minkowski’s inequality and Lemma 2.4, we have

‖Pn‖s
Hs ≤ 2

2s

2s − 1
(2n + 2)s−1 +

2s

2s − 1
(n + 1)s−1 = Cs

s(n + 1)s−1,

where Cs = (2s+1s/(2s − 1))1/s. Note that the k-th Fourier coefficient of Vn is 1
for |k| ≤ n, so that

‖Pn‖p,r

‖Pn‖Hs

≥ 1

‖Pn‖Hs

∑
|k|≤n

rk+2n+1 + a positive quantity

1/p

>
r(n+1)/p

‖Pn‖Hs

(
1 − r2n+1

1 − r

)1/p

≥ r(n+1)/p

Cs(n + 1)1−1/s

(
1 − r2n+1

1 − r

)1/p

.

From the above we get

(1 − r)1/p+1/s−1C(r, p, s) ≥ r(n+1)/p

Cs((n + 1)(1 − r))1−1/s
(1 − r2n+1)1/p.

Putting r = 1 − 1/(n + 1) and letting r → 1− yields

lim inf
r→1−

(1 − r)1/p+1/s−1C(r, p, s) ≥ C−1
s e−1/p(1 − e−2)1/p > 0.

It remains to prove (iv). Following [11], let ε > 0 and pick an integer nε and
polyng(q822l]TJ/F34 11.955 Tf 120)-398(t)098+

2s
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2

Remark. It seems to be a hard task to find non-trivial estimates of C(r, p, s) for
s ≤ 1/
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This is of course a norm equivalent to the usual A2 (the Bergman space) norm.
Recall that in the usual Bergman space, there is no Bohr phenomenon (since

there is none even in H2.) Notice that if ‖f‖X ≤ 1, then |a0| + |an|√
n+1

≤ 1, so

(
|an|

1 − |a0|
)

1
n ≤ (n + 1)

1
2n
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where T is the unit circle and ‖g‖BMO(T ) is the usual Garsia BMO norm (cf.
[13].) Then for any function g ∈ BMO, since ‖g‖L1(T ) ≤ ‖g‖BMO(T ) (cf. [13, pp.
224-225]), if ‖f‖ ≤ 1 and n ≥ 1,

|an| ≤ ‖f − f(0)‖L1 ≤ ‖f − f(0)‖BMO(T ) ≤ 1 − |f(0)|.

Therefore
∞∑

n=0

|an|rn ≤ |f(0)| + (1 − |f(0)|) r

1 − r
≤ 1

whenever r ≤ 1
2
. In fact, if X is any normed space of analytic functions such that

the norm on X dominates the L1 norm, this same argument shows that defining
a new norm

‖f‖new := |f(0)| + ‖f − f(0)‖old

will always force a positive Bohr radius of at least 1
2
.

It is worth noticing that Bohr’s phenomenon holds for all points in the disk.
Let’s suppose that X is a space whose norm behaves “well” with respect to
translations and dilations, namely, satisfies the following condition:

(*) suppose f is a function in X such that ‖f‖X ≤ 1. Then for
any z0 ∈ D and radius r > 0 such that the disk D(z0, r) centered
at z0 of radius r is contained in the unit disk,

‖f(z0 + rz)‖X ≤ 1.

Remark. Of course, the natural assumption that the norm in X is lower semi-
continuous with respect to pointwise convergence immediately implies that if X
satisfies (*), it is a subspace of H∞, simply by letting r → 0 in (*).

If such a space X satisfies the Bohr phenomenon with Bohr radius R, fix any z0 in

the disk and take the Taylor expansion of a function f(z) =
∑∞

n=0
f (n)(z0)

n!
(z−z0)n

about z0 in the disk of radius 1 − |z0|. We obtain

∞∑
n=0

|f
(n)(z0)

n!
||z − z0|n ≤ 1

for |z−z0| ≤ (1−|z0|)R. To see this, we simply apply a linear change of variables,
mapping the unit disk to the disk centered at z0 of radius 1 − |z0|. This allows
us to put the above criterion in invariant form.

Theorem 3.2. (Invariant criterion) Let X be a Banach space of analytic func-
tions on the disk as in the previous theorem satisfying condition (*). Then Bohr’s
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4. Functions of several variables

The above scheme applies to a several variables context as well. We will use the
standard multivariate notations as in [9]: we write an n-variable power series∑

α cαzα where α = (α1, α2, ..., αn) is an n-tuple of non-negative integers, |α| =
α1 + α2 + ... + αn, α! = α1!α2!...αn!, z = (z1, z2, ..., zn) is an n-tuple of complex
numbers, and zα = zα1

1 zα2
2 ...zαn

n . We consider analytic functions defined on the
unit polydisk Dn = {z : max1≤j≤n |zj| < 1}. We will denote by Dα the derivative

∂|α|

(∂z1)α1 ...(∂zn)αn
.

The following theorem is a several variable analogue of Theorem 2.5, b). (Exten-
sions of most of the other results in Section 2 could be carried out in a manner
similar to that of [11], and we omit them.)

Theorem 4.1. Let 0 < p < 2 and q = 2
2−p

. Let f(z) =
∑

α cαzα ∈ H2(Dn) be

such that

‖f‖H2(Dn) :=
∞∑

|α|=0

|cα|2 ≤ 1

and c0 = 0. Then ∑
α

|cα|p|zα| < 1

for any z ∈ RnDn, where Rn ≤ ( 1
2n

)
1
q .

Proof. Let z = Rw for w ∈ Dn. Then∑
α

|cα|p|zα| =
∑

α

|cα|p|(Rw)α|

=
∑

α

|cα|p|wα|R|α|

≤ (
∑

α

(|cα|p|wα|)
2
p )

p
2 (
∑

α

|R|α|q)
1
q

(by Hölder’s inequality)

= (
∑

α

(|cα|2|wα|
2
p ))

p
2 (

∞∑
k=1

∑
|α|=k

Rkq)
1
q

≤ (
∑

α

|cα|2)(
∞∑

k=1

(Rq)knk)
1
q

≤ 1 (when R ≤ (
1

2n
)

1
q ).

2

In a similar manner, we can extend Theorem 3.1 to several variables.
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Theorem 4.2. Let X be a Banach space of analytic functions from Dn into C
such that polynomials are dense in X, the set of bounded point evaluations is
Dn, and if f ∈ X with ‖f‖X ≤ 1 is not constant then |f(0)| < 1. Then Bohr’s
phenomenon holds in X if and only if

sup{ |(Dαf)(0)|
α!(1 − |f(0)|)

)
1
|α| : ‖f‖X ≤ 1, |f(0)| < 1, α ∈ Nn, α 6= 0} < ∞.

We leave it to the reader to restate Theorem 4.2 in a point-invariant form simi-
larly to Theorem 3.2.

In particular, if we are interested in bounded functions on the polydisk, we have
a several variable analogue of Corollary 3.4.

Corollary 4.3. Let f be an analytic function from Dn to D. Then for each
multi-index α,

(6) sup
z∈Dn

|(Dαf)(z)|(1 − |z1|2)α1(1 − |z2|2)α2 ...(1 − |zn|2)αn

1 − |f(z)|2
< ∞.

Notice that applying (6) coordinate-wise, one can easily extend this result to
mappings from the polydisk into itself. Moreover, since as is shown in [9], Bohr’s
radius for any complete Reinhardt domain G is positive, Corollary 4.3 immedi-
ately extends to all such domains and accordingly, for example to holomorphic
mappings of the unit ball into itself, a recent result of MacCluer, Stroethoff, and
Zhao (cf. [19].)
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